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Abstract 

The research objective of our group is to improve the 

intrapartum detection of cardiotocography tracings 

associated with an increased risk of developing fetal 

acidosis and subsequent hypoxic-ischemic 

encephalopathy (HIE). The detection methods that we 

aim to develop must be sensitive to abnormal tracings 

without causing excessive unnecessary interventions.  

Past studies showed that the dynamic response of fetal 

heart rate (FHR) to uterine pressure (UP) during the 

intrapartum could be modelled using linear systems. In 

this study, we examined the assumption of linearity by 

comparing the performance of linear dynamic and 

nonlinear dynamic models of the UP-FHR system. The 

linear systems were defined by second-order state-space 

models. The nonlinear systems were defined by 

Hammerstein models: a cascade of a static nonlinearity 

and a linear second-order state-space model.  

Our results showed that nonlinear dynamic models 

were better than linear systems in 81.8% of UP-FHR 

segments. 

 

1. Introduction 

Neonatal hypoxic-ischemic encephalopathy (HIE) is a 

serious brain dysfunction often caused by intrapartum 

fetal hypoxia. Clinicians regularly monitor two signals 

during labor: fetal heart rate (FHR) and uterine pressure 

(UP) using cardiotocography (CTG). These signals are 

thought to carry information about the fetal state and how 

well the fetus is withstanding the stress of labor.  

Warrick et al. demonstrated that the relationship 

between UP and FHR dynamics could be quantified using 

system identification [1]. Furthermore, they showed that 

the resulting system parameters could be used to identify 

fetal pathology [1]. To our knowledge, the identification 

of UP-FHR systems has been limited to linear dynamic 

models. However, physiological evidence suggests that 

the effect of uterine contractions on the blood flow in the 

uterine artery is nonlinear [2]. The uterine artery perfuses 

the placenta, bringing oxygen to be delivered to the fetus. 

Thus, there is a direct link between the blood flow in the 

uterine artery and fetal hypoxia. For that reason, we 

hypothesized that a nonlinear structure would model the 

UP-FHR system better than a linear structure. 

 

2. Dataset and methods 

2.1. Fetal database 

We have access to the largest CTG database reported 

to date containing intrapartum signals for ~250,000 term 

births. Our database was collected at 15 Kaiser 

Permanente Northern California hospitals between 2011 

and 2019. This study focused on two subsets of vaginal 

births: (1) 200 randomly selected normal cases with 

normal blood gas (pH > 7 and base deficit < 10 mmol/L); 

and (2) 170 HIE cases characterized by the presence of 

fetal acidosis (pH < 7 or base deficit > 10 mmol/L) at 

birth and clinical evidence of encephalopathy. Blood gas 

measurements were taken from the umbilical cord at birth 

or within the first two hours of life.   

 

2.2. Signal pre-processing 

The CTG signals were preprocessed using PeriCALM 

Patterns, a specialized software by PeriGen Inc. 

PeriCALM Patterns automatically repaired the CTG and 

identified important patterns such as the FHR baseline, 

FHR deceleration, FHR accelerations, UP contractions, 

and artifacts [3]. CTG was sampled at 4 Hz, high-pass 

filtered with a 4.5 mHz cut-off frequency, and decimated 

with antialiasing filtering to a 0.5 Hz sampling frequency.  

After preprocessing, we removed the slow wave from 

the FHR signal that connected the baseline patterns, and 
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one that connected the intervals between contractions 

within the UP signal. These slow waves were generated 

by linearly interpolating consecutive patterns and then 

smoothing the resulting signal with a moving average in a 

360 second window. This centered the CTG signal 

amplitudes around zero for periods where there was no 

activity in the UP or FHR related to contractions.  

CTG signals are noisy and often contain gaps related to 

disconnection or movement artifacts. We divided the 

signals into continuous 20-minute segments. To 

maximize the number of segments that could be used, we 

also included shorter segments at least 10 minutes long, 

and longer segments to a maximum of 30 minutes. Then, 

noisy samples, labelled as artifacts by PeriCALM 

Patterns, were removed from segments. Any resulting 

segments shorter than 10 minutes or with more than 20% 

noisy samples were discarded. The remaining segments 

were used for system identification. 

 

2.3. System identification 

For each segment, we estimated and compared the 

performance of two models: (1) a linear structure (LS) 

consisting of a 2nd order linear state-space (SS) model and 

(2) a nonlinear Hammerstein structure (NLS) comprising 

a static nonlinearity, described by a fifth order Chebyshev 

polynomial, followed by a 2nd order SS element. The LS 

models were identified using a subspace method, similar 

to [4]. The NLS models were identified using an iterative 

subspace algorithm for the identification of Hammerstein 

systems [5]. Identification was deemed to have failed for 

a segment if an algorithm did not converge or generated 

an unstable model. 

 

2.4. Comparison of model structures 

We used three criteria to assess the performance of the 

models:  

(1) the percent variance accounted for: 

𝑉𝐴𝐹% = [1 −
𝜎2(𝐹𝐻𝑅𝑜𝑏𝑠 − 𝐹𝐻𝑅𝑝𝑟𝑒)

𝜎2(𝐹𝐻𝑅𝑜𝑏𝑠)
] ∗ 100% 

where 𝜎2 is the variance, 𝐹𝐻𝑅𝑜𝑏𝑠 is the observed FHR, 

and 𝐹𝐻𝑅𝑝𝑟𝑒 is the predicted FHR,  

(2) the Akaike information criterion: 

𝐴𝐼𝐶 = 𝑁 ∗ log(𝑆𝑆𝐸) + 2 ∗ 𝑀 

where 𝑁 is the number of samples, 𝑆𝑆𝐸 is the sum of 

squared errors of the prediction, and 𝑀 is the number of 

free parameters; and  

(3) the minimum description length: 

𝑀𝐷𝐿 = [1 + 𝑀
log(𝑁)

𝑁
] ∗ 𝑆𝑆𝐸. 

The 𝑉𝐴𝐹% quantifies the accuracy of the predictions 

of the identified models. It is useful to compare models 

with the same structure. However, the VAF% does not 

account for the number of free parameters in a model. In 

this study, the LS has 𝑀 = 10 parameters, while the NLS 

had 𝑀 = 15. Models with more free parameters can 

overfit the output and model the noise, increasing the 

𝑉𝐴𝐹%. The AIC and the MDL account for this by 

including the number of free parameters in their criteria.  

To compare the LS and NLS models, we used the 

difference Δ𝐴𝐼𝐶 = 𝐴𝐼𝐶𝑁𝐿𝑆 − 𝐴𝐼𝐶𝐿𝑆 and the ratio 

𝑀𝐷𝐿𝑟𝑎𝑡𝑖𝑜 =
𝑀𝐷𝐿𝑁𝐿𝑆

𝑀𝐷𝐿𝐿𝑆
. A value of Δ𝐴𝐼𝐶 < 0 or 

𝑀𝐷𝐿𝑟𝑎𝑡𝑖𝑜 < 1, indicated that the NLS was better than the 

LS. Usually, 𝑀𝐷𝐿𝑟𝑎𝑡𝑖𝑜 favors model simplicity while 

Δ𝐴𝐼𝐶 favors accuracy. Thus, if a structure is favored by 

both criteria, it is a more accurate model without being 

overly complex. 

 

2.5. Delay estimation 

UP signals are usually acquired using an abdominal 

CTG sensor that has an inherent delay in the detection of 

the pressure wave associated with contractions. This 

delay depends on many factors: sensor position, the 

thickness of the maternal abdomen, et cetera. In addition 

to the acquisition delay, there is also a physiological 

delay associated with the response time of the FHR to 

uterine contractions. To find the best delay we performed 

separate LS and NLS identification for UP delays ranging 

from -80 to 80 seconds in steps of 2 seconds. The system 

and delay with the highest 𝑉𝐴𝐹% was selected as the best 

model for each structure. 

 

2.6. Surrogate analysis 

The validity of the best LS and NLS models for a 

segment was evaluated using a surrogate test. Thus, for 

each segment, we generated 200 FHR surrogates using 

the amplitude adjusted Fourier transform (AAFT). The 

AAFT preserves a signals magnitude spectrum and 

amplitude distribution while randomizing its phase. This 

phase randomization destroys any causal UP-FHR 

relationship. The LS and NLS identification was repeated 

for each surrogate to generate a distribution of 𝑉𝐴𝐹% for 

unrelated signals (i.e., the system modelled the noise). If 

the 𝑉𝐴𝐹% of the original model was larger than the 95th 

percentile of the surrogate 𝑉𝐴𝐹%, we considered the 

original to be valid with a significance of 95%. 

 

3. Results 

3.1. System identification results 

Figure 1 shows the breakdown of model estimation 

results. There was a total of 8674 CTG segments, of these 

1716 were discarded due to excessive noise. 

Identification failed in less than 0.1% of the remaining 
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segments, due to convergence or stability issues. The 

number of segments where the identification was 

successful and yielded models that passed the surrogate 

test was larger for the NLS structure (6043) than for LS 

(5566). 

 

3.2. Valid models 

 
Figure 2 shows the proportion of segments for which 

the LS and NLS models passed the surrogate test. For 

most segments (5100), both model structures passed the 

surrogate test. However, the NLS model passed the test 

while the LS failed for 943 segments; and the LS model 

passed while the NLS failed in 466 segments. Finally, 

both LS and NLS models failed the surrogate test for only 

449 the segments. The remaining analyses will focus on 

the 5100 segments for which both model structures 

passed the surrogate test. 

Figure 3 shows an example where the nonlinear 

prediction (blue) tracked the FHR better than the linear 

prediction (red). For this segment, the NLS 𝑉𝐴𝐹% was 

68.1%, while the LS 𝑉𝐴𝐹% was 49.7%. Specifically, 

Figure 3 shows that the NLS predicted better the deeper 

decelerations at -49, -39, and -34 minutes before delivery.  

 Figure 4 shows the NLS (A, B), and LS (C) models 

identified for the segment in Figure 3. Figure 4 (B) and 

(C) show the impulse response of the SSM elements. The 

linear element of the Hammerstein model was normalized 

to have a steady state gain of 1. The static nonlinearity in 

Figure 4 (A) has a shape that generates small responses 

for low amplitude perturbations. However, perturbations 

that are larger than 60 bpm are amplified. This effect is 

evident in Figure 3 where the deeper decelerations are 

predicted better by the NLS than the LS.  

 

 3.3. Model selection 

Figure 5 shows the cumulative distributions of the 

𝛥𝐴𝐼𝐶, and the 𝑀𝐷𝐿𝑟𝑎𝑡𝑖𝑜 criteria comparing the LS and 

 
Figure 1: Distribution of segments according to the results 

of pre-processing, identification, and the surrogate test 

using linear (blue) and nonlinear structures (red). 
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Figure 2: Number of segments for which the linear (LS) 

and nonlinear models (NLS) passed the surrogate test. 
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Figure 3: FHR and UP signals recorded for a typical HIE 

segment with the FHR predictions of the best linear (red; 

𝑉𝐴𝐹% = 46.7%) and nonlinear models (blue; 𝑉𝐴𝐹% =
68.1%) predictions. 

 

 
Figure 4: Nonlinear structure (NLS) comprising (A) a 

static nonlinearity and (B) linear dynamics; (C) linear 

structure identified for the segment in Figure 3. 
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NLS. Figure 5(A) shows that 𝛥𝐴𝐼𝐶 was positive, favoring 

the NLS, in 91.1% of segments. Figure 5(B) shows that 

the 𝑀𝐷𝐿𝑟𝑎𝑡𝑖𝑜 also favored the NLS, as it was greater than 

1 in 81.8% of segments. All segments where the NLS was 

favored by the MDL were also favored by 𝛥𝐴𝐼𝐶. Thus, 

MDL was the strictest criterion and determined that in 

81.8% of segments, the NLS was the best structure over 

the LS. 

 

4. Discussion 

Our major finding was that nonlinear models capture 

UP-FHR dynamics better than linear models in 81.8% of 

segments for both the normal and HIE groups. The better 

performance of a nonlinear UP-FHR model is consistent 

with known physiological mechanisms. The uterine artery 

supplies oxygen and nutrients to the placenta and fetus. 

During labor, uterine contractions reduce the blood flow 

in the uterine artery causing transitory periods of fetal 

hypoxia. The fetus protects itself with a series of 

compensatory mechanisms that cause FHR decelerations 

[6]. It has been shown that the relationship between the 

amplitude of uterine contractions and blood flow in the 

uterine artery is nonlinear [2].  This can be expected to 

translate in a nonlinear relation between UP and FHR.  

An important question is why the LS model performed 

better than the NLS in 18.2% of the segments. We 

suspect that this was because for these segments the 

contractions were not large enough to elicit a nonlinear 

response. It is difficult to validate this hypothesis because 

the UP signal is uncalibrated across individuals. This is a 

limitation of our study that we will address in the future. 

Finally, it is important to note that this analysis treated 

each segment independently. Unless there was a sudden 

change in the nature of the signals (i.e., a sentinel event or 

signal disconnection), there is no reason to expect the 

system parameters to vary widely across consecutive 

segments. Thus, our current approach does not consider 

the dependency of the system parameters of one segment 

on those of adjacent segments. In the future, we will use 

time-varying methods to study how the system 

parameters change as a function of time. Also, we will 

explore the difference of these parameters between the 

normal and HIE groups. 

 

5. Conclusion 

We demonstrated that the NLS captured better the UP-

FHR relationship during the intrapartum than the LS. 

When modelling, it is important to have the right model. 

In this case, since the NLS was better, it means that the 

parameters of the LS are biased. Reducing the bias in the 

parameters is important for future attempts to classify 

which fetuses are progressing towards a normal outcome 

of labor and those that are at risk of developing HIE. 
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Figure 5: Cumulative distribution of the model selection 

criteria (A) Δ𝐴𝐼𝐶 and (B) 𝑀𝐷𝐿𝑟𝑎𝑡𝑖𝑜. The proportion of 

models for which the NLS was best is in magenta. 
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